The Solid State Energy Conversion Alliance

Fuel Cells for Buildings and Stationary Applications Roadmap Workshop

April 4, 2002 Wayne A. Surdoval

National Energy Technology Laboratory

National Benefits

Energy Security

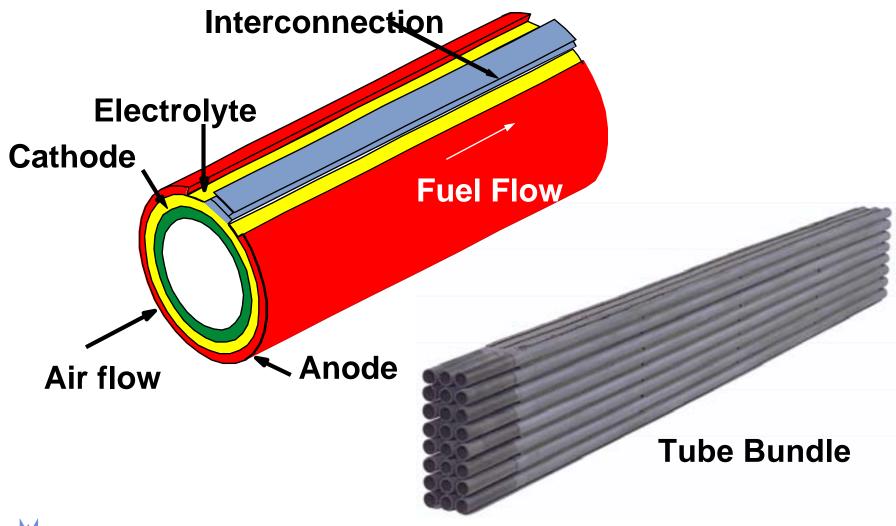
- Multi-fuel capability allows use of available fuels or currently cost-effective fuels including hydrogen and coal.
- In many applications doubles the efficiency of producing power from fossil fuels compared to current technologies.
 - Reduced CO₂ emissions
 - Reduced dependence on imported fuels
- Rapid response to local energy shortages. Eliminates long-

lead time and economic uncert plants.

National Benefits

Environment and Health Benefits

 Important health benefits due to the negligible emission of environmental pollutants using fossil fuels.


Economic Choices

- Provides a grid independent, environmentally friendly power source for use in the undisturbed, natural areas of the nation.
- Provides more power choices for residences and businesses. The high efficiencies of a combined heat and power (CHP) system along with a choice of fuel, power quality, grid integration or grid independence will provide citizens with choices and will significantly assist de-regulation efforts throughout the nation.

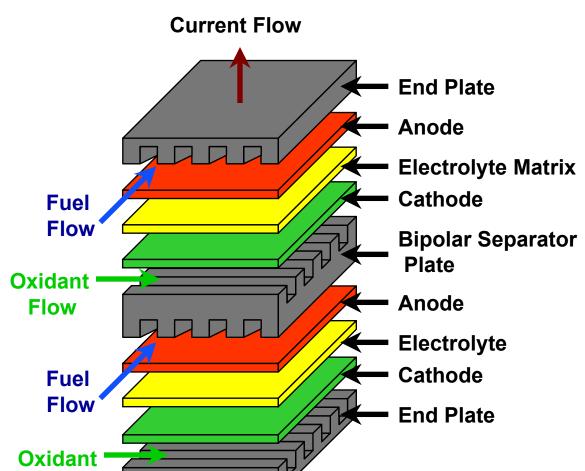
Tubular SOFC

Tubular Solid Oxide Fuel Cells

2001

- 47% efficiency
- > \$10,000/kW
- 100-220kW
- 16,000 hr operation at 100-kW

2003-2008


- Near-term DG market
- 47-63% efficiency
- Homestead, PA 15MW/yr Manufacturing facility 2003 (\$4500/kW initially)
- 250kW 550kW
- \$1,000-1,500/kW

Planar Cell

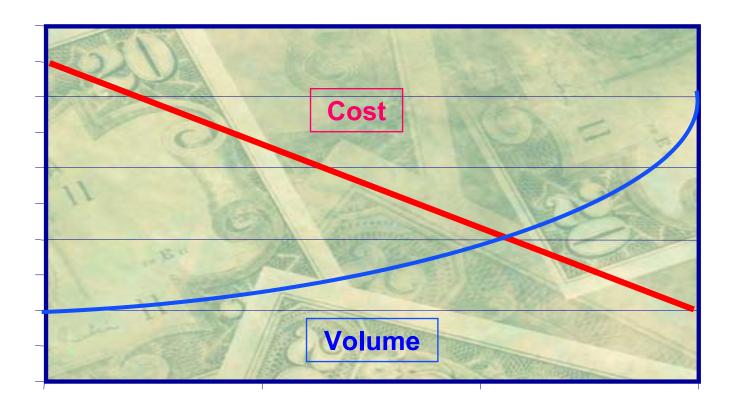
Flow

Automotive Systems

FCT 5 kWe SOFC Power System Oblique View-Open Access Panels

Working Definition of Hybrid Fuel Cell

- A combined-cycle power generation system containing a high-temperature fuel cell plus a
 - √Gas turbine


 or
 - ✓ Reciprocating engine or
 - ✓ Another fuel cell

The Vision: Fuel Cells in 2010

Low Cost/High Volume \$400/kW/ > 50,000 units/yr

SOFC Materials Costs

SOFC Component	Material Cost (\$/kW)
Common Materials (excluding interconnects)	
Ni/ZrO ₂ anode (500 microns)	11.67
ZrO ₂ /Y ₂ O ₃ electrolyte (10 microns)	0.40
LaMnO ₃ cathode (50 microns)	2.30
ss End Plates (1.25 centimeters)	0.70
Subtotal Common Materials	15.07
Ceramic Interconnect (2.5 millimeters)	137.50
Subtotal Ceramic Interconnect & Common Materia	ls 152.57
50% Contingency	76.28
Total Material Costs Using Ceramic Interconnects	228.85
Metallic Interconnect (2.5 millimeters)	6.67
Subtotal Metallic Interconnect & Common Materia	
50% Contingency	10.87
Total Material Costs Using Metallic Interconnects	32.61

SECA Goals and Applications

2005

- \$800/kW
 - Long-haul trucks
 - -RVs
 - Military
 - Premium power

- \$400/kW
 - Residential & industrial CHP
 - Transportation auxiliary power

2015

- Vision 21 power plants
 - 75% efficient
- **Hybrid systems**
 - -60-70% efficient

Technical Requirements

Cost \$400 / kW

Power Rating Net 3-10 kW

Efficiency 30 - 50% [APU]

(AC or DC/LHV) 40 - 60% [Stationary]

Fuels Natural Gas

(Current infrastructure) Gasoline

Diesel

Design Lifetime 5,000 Hours [APU]

40,000 Hours [Stationary]

Maintenance Interval > 1,000 Hours

Program Structure

Industry Input

Program Management

Project Management

Needs

Research Topics

Industry Integration Teams

Core Technology Program

INDUSTRIAL TEAMS

Honeywell (GE)	Demonstrated a unique unitized sealess radial design. Single cell performance at 700 C is near Goals
Delphi/ Battelle	Demonstrated automotive APU. Design developed by Battelle will use unique seals, anode, and cathode.
Cummins/ McDermott	McDermott has demonstrated a unique design and cost effective multi-layer manufacturing using techniques developed in the semi-conductor industry.
Siemens- Westinghouse	Siemens-Westinghouse has redesigned their technically successful tubular design to reduce stack cost.

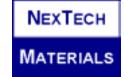
Core Technology Program The Technology Base

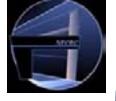
Alliance

	# of Participants	Funding Mechanism
Large Business	5	Industrial Teams 1999 PRDA 2000 Multi-Layer
Small Business	6	2000 Multi-Layer SBIR Phases I & II
Universities & Non-Profits	6	1999 PRDA UCR
National Laboratories	6	Field Work Proposals

SECA Players/Efforts

Universities, National Labs, Industry

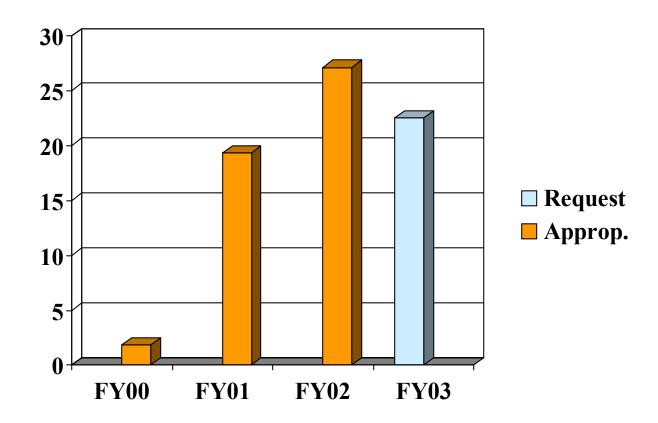




NORTHWESTERN UNIVERSITY

Automotive Systems

Georgia Institute
of Technology


LOS ALAMOS NATIONAL LABORATORY

SECA Budget

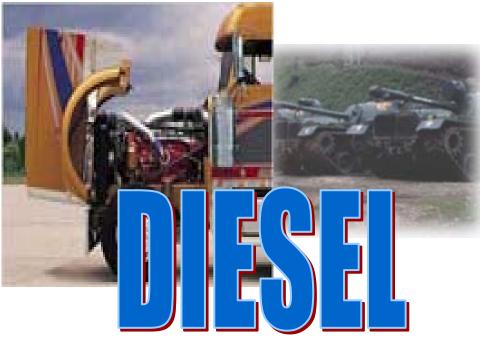
(\$ - millions)

SECA Timeline

 Industry Team Solicitation Issued 	November 3, 2000
Proposals Due	January 3, 2003
SECA Core Technology Program Workshop	February 14 & 15, 2000
2nd Annual SECA Workshop	March 29 & 30,2001
2001 Industrial Teams Selected	August 2001
 Core Technology Program Review Core Technology Program 	November 2001 January 2002

• Core Technology Program Review June 18 & 19, 2002

www.netl.doe.gov/scng www.seca.doe.gov



Solicitation Issued

FUTURE NEEDS

